Snell's Law Lab
DATA
Name

$\theta_{\text {incident }}$	

	$\sin \left(\theta_{\text {incident }}\right)$	$\theta_{\text {refracted }}$
$\sin \left(\theta_{\text {refracted }}\right)$		

DRAW A GRAPH of the $\sin \left(\theta_{\text {incident }}\right)$ vs $\sin \left(\theta_{\text {refracted }}\right)$ on the grid below.

The slope is the ratio of $\frac{n_{\text {refracted }}}{n_{\text {incident }}}$. The index of for the incident ray is air, $n=1.00$. Use the graph to determine the index of the glass the light travels through and the average speed of the light through this glass. Show your work.

