Snell's Law Lab

DATA Name

$\theta_{incident}$	$sin(\theta_{incident})$	$\theta_{ ext{refracted}}$	$sin(\theta_{refracted})$

DRAW A GRAPH of the $sin(\theta_{incident})$ vs $sin(\theta_{refracted})$ on the grid below.

The slope is the ratio of $\frac{n_{refracted}}{n_{incident}}$. The index of for the incident ray is air, n=1.00.

Use the graph to determine the index of the glass the light travels through and the average speed of the light through this glass. Show your work.