$$
\begin{aligned}
& \text { Pennies and } P_{\text {robability: }} \\
& \text { Exploring Senetics with Money }
\end{aligned}
$$

In this lab, your pennies will represent the gametes an offspring receives from its mother (one coin) and its father (the second coin).

The parents' genotypes are \qquad and \qquad .

Heads represents the Dominant trait: Round Seed (\mathbb{R})
Tails represents the Recessive trait: Wrinkled Seed (r)
Procedure:
Before starting the lab, read the procedure completely and make your hypothesis in the space provided.
i. Acquire 2 coins.
ii. Flip both coins at the same time, and record the results below.

For Heads, Heads, make a tally mark in the "RR" column
For Heads, Tails, make a tally mark in the "Rr" column
For Tails, Tails,' make a tally mark in the "rr" column
3. Total your tallies and wait for class totals.
4. Answer the questions

Hypothesis:

Data:

	RR	Rr	rr
Tally for my 50 tosses			
Total for my 50 trials			
Class totalls			

Conclusions:

1. Based on your data and the class totals for this particular cross, what is the probability of producing an offspring that is has a round seed? \qquad a wrinkled seed? \qquad
2. What is the ratio of genotypes produced from this particular genetic cross?

Punnett Squares

1. Create a Punnett Square for the cross two pea plants that are both heterozygous ($T t$) for the plant height trait (the Tall allele is Dominant).
$\operatorname{Rr} \times \operatorname{Rr}$

a) What is the probability that these plants will produce a tall offspring?
b) What is the probability that that they will produce an offspring with the genotype rr?
c) What is the ratio of the all possible genotypes ($R R: R r: r r$)?
2. Incomplete dominance occurs when one allele is not completely cominant over another. When a Red (RR) and White (WW) Snapdraggons are crossed, all heterozygous offspring will be pink (RW). Complete the Punnett Square to show how this occurs:

RW \times RW

a) What will happen if two of these heterozygous offspring are crossed? Identify the Phenotypes and Genotypes of offspring that could result from this cross:

RW \times RW

b) What is the probability of each of these phenotypes? Of each of the genotypes?

