

Two Difficult Friction Problems

A 100 kg object is on grass. You are pulling it with a horizontal force of 833 N , and the object is sliding at $1.5 \mathrm{~m} / \mathrm{s}$. Suppose, through divine intervention perhaps, that the constant of acceleration near the Earth changed suddenly to half its current value (ie. to $4.9 \mathrm{~m} / \mathrm{s} / \mathrm{s}$). What force would you need to be applying to keep the object moving at $1.5 \mathrm{~m} / \mathrm{s}$? What force would be required to keep the object moving at a new constant speed of $4.5 \mathrm{~m} / \mathrm{s}$?
$\therefore F_{\text {Net }}=0 ; F_{A}=F_{F}$
When gravity changes, it

$$
\text { is halved, so } F_{w} \text { is halved }
$$

$$
\text { which halves } \text { Ff: }
$$

To keep it going at a
constant velocity FA must

$$
\text { match } F_{F}
$$

b) Says constant speed, so after a bit of force

$$
\begin{aligned}
& \text { to accelerate it } \\
& \text { to } 4.5 \mathrm{~m} / \mathrm{s} \text {, it will. }
\end{aligned}
$$

$$
\text { take } 416.5 N \text { to }
$$

maintain that
velocity.

Object A (weight $=50 \mathrm{~N}$) slides on top of the much larger object B (weight $10,000 \mathrm{~N}$). The coefficient of sliding friction between the two objects is 0.25 . The objects are transported to a distant planet which has a diameter of 8000 km and a mass of $8 \times 10^{25} \mathrm{~kg}$. How much force would it take to slide A along B at constant velocity on this new planet? How much force would it take on the new planet to accelerate object A along B from $1 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ in a 5 second interval?

