7. A 1500 kg pick-ip sruck is acted upon by an external force which redives it's
velocity from $8.6 \mathrm{~m} / 5.504 .3 \mathrm{~m} / \mathrm{s}$ in 6.7 s . Whet is the volue of this retarding force?
A 15500 kg bus is trayeling at $85 \mathrm{~km} / \mathrm{h}(23.6 \mathrm{~m} / \mathrm{s})$. It is brought to a stop in 145 m .
What force do the brakes on the bus provide in stopping the bus?
8. A 4.5 kg canmon shetl ts shot out of a 2.3 m long connon The exploding gun powder
generates a force of $6.66 \times 10^{\circ} \mathrm{N}$ on the camon shell. How fest does the cannon
shell lecve the gun barrel?
9. A 52 kg bag of cement is dreged across a cement floor. The coefficient of ariction
between the bog of cemem and the floor is 0.42 .
a. Sherry exerts a herizontol force of 165 A
a. Tom exerts a horizontal force of 275 N . Wili the bag now move? If so
determine the accelergion of the beg of cement.
10. A 45 kg girl and 65 kg girl feel some aptraction wwards each other when sithing on a park bench. If they feel $1.3 \times 10^{-7} \mathrm{~N}$ ef attractive torce (you know how sensitive

fow wing questions: What force does the floor place on the box (F) when the zevetor is sill?
a. . What force does the floor place on the box (F) when the elevator is moving at a constant speed? Does in motter whether the elevator is moving it or
c. What force does the thoor plece on the box $\left(F_{N}\right)$ when the elevetor is.
d. What force daes the floor place on the box Fr. when the elevator is
What force coes the floor place on the box (H) when the elevator support
elevetor shath?
11. A 16000 kg rocket carrying a satelife produces 185000 N of thrust.
c. What is the initial accelenation of this rocket?
950 kg . What is the acceleration of the rocket fust before flome-but?
ε วธิอ ${ }_{\text {d }} \operatorname{somuruर́a~}$

Two Difficult Friction Problems

A 100 kg object is on grass. You are pulling it with a horizontal force of 833 N , and the object is sliding at $1.5 \mathrm{~m} / \mathrm{s}$. Suppose, through divine intervention perhaps, that the constant of acceleration near the Earth changed suddenly to half its current value (i.e. to $4.9 \mathrm{~m} / \mathrm{s} / \mathrm{s}$). What force would you need to be applying to keep the object moving at $1.5 \mathrm{~m} / \mathrm{s}$? What force would be required to keep the object moving at a new constant speed of $4.5 \mathrm{~m} / \mathrm{s}$?

Object A (weight $=50 \mathrm{~N}$) slides on top of the much larger object B (weight $10,000 \mathrm{~N}$). The coefficient of sliding friction between the two objects is 0.25 . The objects are transported to a distant planet which has a diameter of 8000 km and a mass of $8 \times 10^{25} \mathrm{~kg}$. How much force would it take to slide A along B at constant velocity on this new planet? How much force would it take on the new planet to accelerate object A along B from $1 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ in a 5 second interval?

