Worksheet 6.3-Collisions

1) A 30.0 kg object moving to the right at a velocity of $1.00 \mathrm{~m} / \mathrm{s}$ collides with a 20.0 kg object moving to the left with a velocity of $5.00 \mathrm{~m} / \mathrm{s}$. If the 20.0 kg object continues to move to the left at a velocity of $1.25 \mathrm{~m} / \mathrm{s}$, what is the velocity of the 30.0 kg object?
2) A $4.50 \times 10^{3} \mathrm{~kg}$ railway car is moving east at a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ on a level frictionless track when it collides with a stationary $6.50 \times 10^{3} \mathrm{~kg}$ caboose. If the two cars lock together upon impact, how fast are they moving after collision?
3) A 925 kg car moving at a velocity of $18.0 \mathrm{~m} / \mathrm{s}$ right collides with a stationary truck of unknown mass. The two vehicles lock together and move off at a velocity of $6.50 \mathrm{~m} / \mathrm{s}$. What is the mass of the truck?
4) A 50.0 g bullet strikes a 7.00 kg wooden block. If the bullet becomes imbedded in the block and they both move off at a velocity of $5.00 \mathrm{~m} / \mathrm{s}$, what was the initial speed of the bullet?
5. A 40.0 g hot dog moving with a velocity of 9.00 m / s to the right collides with a 55.0 g hot dog bun with a velocity of $6.00 \mathrm{~m} / \mathrm{s}$ to the left. If the two objects stick together upon collision, what is the velocity of the combined masses?
6. A 76 kg student, standing at rest on a frictionless surface throws a 0.20 kg cream pie horizontally at $22 \mathrm{~m} / \mathrm{s}$ at Mr. Trask who is standing to the student's left. What was the velocity of the student after they throw the pie?
7. A 25 kg turkey is fired from a $1.1 \times 10^{3} \mathrm{~kg}$ turkey launcher. If the horizontal velocity of the turkey is $325 \mathrm{~m} / \mathrm{s}$ east, what is the recoil of the launcher?
8. A rail vehicle with a rocket engine is being tested on a smooth track. Starting from rest the engine is fired for a short period of time, releasing 4.5×10^{2} kg of gases. It is estimated that the average velocity of the gases is $1.4 \times 10^{3} \mathrm{~m} / \mathrm{s}$ to the right, and that the maximum velocity of the vehicle is $45 \mathrm{~m} / \mathrm{s}$ left. What is the mass of the vehicle?
