Thermal I ranster & Equilibrium
How thermal energy transfers:
Steel rod Steel rod Conduction (solids)
More vibration, the molecules will collide with nearly molecules, and transfer some energy
Remember -> When something heats up it expands. i. less dense: Float
[Convection (liquid & gas)
Energy transfer that doesn't pass through a medium is called radiation. Iron BBQ
medium is called radiation. Firm BBQ
medium is called radiation. Tron BBQ Light Photons Photons Very Hot -> Red
Thermal Energy always transfers From an
an area of high concentration to low concentration (high temperature) -> (low temperature)
Equilibrium: the state where a sample/systems is

Equilibrium Temperature: the temperature that

Work and Energy Page 1

stable

Equi	librium	Temperature	; the	e tem	perature	that
two	objects	stabilize	at	when	brought	together.

Two 50g cups of water. Cup A is 50°C. Cup B is O'C. What is the temperature they will reach when mixed.? will lose energy Prediction: 25°C Q=> positive AC DAegative What would the DErbe fore the system: O Childozinak DET = QA+QB TFA = TFR > 0 = QA + QB (TF-TiB) + MB CB (TF-TiB) ()=0.050mx41805/kg° (T=50°C)+0.050.4180 (Ta) 0=209(TF-50)+269(TF-0) 0=209TF-10450+209TF-0 10450 = 418T= \(\tag{1}=25°C\)

A 100y cup of Water is 51°C. It

is poured into a -13°C piece of

Sponge with mass 74g (cs=1735). What is

the equilibrium temperature?

O=Qw+Qs

O=Mcw DTw + Ms Cs DTs

O=0.1(4180)(Tx-51) + (0.074)(1735)(Tx-(-13))

O=418(Tx-51) + 128.39(Tx+13)

O=418Tx-21318+128.39Tx+1669.07

$$0 = 546.39T_{F} - 19648.93$$

$$T_{F} = \frac{19648.93}{546.39} \qquad T_{F} = 36^{\circ}C$$