Kinetic Energy Kinetic Energy: the energy of motion KE or Ex Units -> J scalar scannot be negative 1) Moving -> Has KE (positive) @ Not Moving -> No KE =0 Derivation for KE **2** V=0 B W=DE (1) Motion - Kinematics If I bring an object from KE=0 rest to some speed Vc2 = 13 + 2ad W=KE+-KEi 42 = 2ad W=KEG-O W= KEs How to connect W. to u? Vc2 = 2 [xd] < W=F·d F=m·a m 42 = 2 KEF, KE = / mu2 What is the kinetic energy of a 3kg box that is thrown at 4m/s? KE= ± mv2 = = = (3)(16) +24J

Work-Energy Theorem

- · If a net force is acting on an object, the object will accelerate.
- · Acceleration is the rate of change of velocity.
- · Therefore the force must be proportional to the change in Kinetic Energy.

Nerefore > .. DKE=F.d

A sprinter exerts a net force of 260N over 35m. What is the sprinters change in kinetic energy?

DKE = F.d = 260,35 = 9100 J

A student accelerates a box, initially at rest, using a 160N force over 12m. If the box has a mass of 10kg, what is the final velocity of the box?

 $SKE = F \cdot d$ $KE_{F} = F \cdot d$ $KE_{F} = F \cdot d$ $\frac{1}{2}mv^{2} = F \cdot d$ $\int_{V^{2}} V^{2} = 2Fd$

$$V = \sqrt{\frac{2 \text{ fol}}{W}}$$

$$V = \sqrt{\frac{2(166)(R)}{16}}$$

$$V = \sqrt{9.6 \text{ m/s}}$$

Proportionality
you are driving a golf cart What happens to the kinetic energy
What happens to the kinetic energy
etional if:
Propose (a) Double the mass v=constant
What happens to the kinetic energy Proportional if: Proportional if: V=constant K=\frac{1}{2}mv^2 K=\frac{9}{2}(2m)v^2 2(2mv^2)} Doubles the kinetic energy b) half the mass? v=constant Halve the binetic energy (C) M=constant v=doubled
Doubles the kinetic energy
(b) half the mass? v=constant
Halve the kinetic energy
(C) M=constant V=doubled
(c) $M = constant$ $V = doubled$ $KE = \frac{1}{2}mv^2 \Rightarrow KE = \frac{1}{2}m(2v)^2 \Rightarrow H(\frac{1}{2}mv^2)$
Four times the energy
$ \begin{array}{ll} \mathcal{L} & (1) & \text{m=constant} & \text{v=half} \\ (\frac{1}{2})^2 = \frac{1}{4} & \text{the energy} \end{array} $
(2)= 4 the energy