Energy: the ability to do work.
Work and Energy are SCALAR values Units: "J" joules

$$
J=k g \cdot m^{2} s^{2}
$$

Work: the change in an objects energy the product of force and distance

$$
W=\Delta E \quad W=F \cdot d
$$

How much work did Vim do?

$$
\begin{aligned}
& W=F \cdot d \\
& W=30 \cdot 3=90 \mathrm{~J} \\
& W=F \cdot d \\
& W=30 \cdot 0=0 \mathrm{~J}
\end{aligned}
$$

Theol lifts a 32 kg grapefruit up she ${ }^{\circ}$ on onto a 0.7 m tall table. How有, 10.7 m guck work did Thee do on the grapefruit?

$$
m=32 \mathrm{~kg}
$$

$$
W=F \cdot d
$$

$$
\begin{array}{ll}
F=F_{g}=m g=32(9.6)=313.6 \mathrm{~N} & W=313.6 \cdot 0.7 \mathrm{~m} \\
d=0.7 \mathrm{~m} & W=219.52 \mathrm{Nm} \\
& W=220 \mathrm{~J}
\end{array}
$$

A 10.0 kg pumpkin is moved horizontally 5.00 m at a constant velocity across a level Floor with a coefficient of friction of $\mu=0,24$. How much work is done moving the pumpkin?

$$
\begin{aligned}
& \text { TN }=98 \mathrm{~N} \\
& F_{F}=F_{N} \mu \xrightarrow[F_{g}=98 \mathrm{~N}]{\longrightarrow} F_{\text {app }}=23.52 \mathrm{~N} \\
& =98(0,22) \\
& =23.52 \mathrm{~N} \\
& W=F_{\text {app }} \cdot d \\
& W=23.52 \mu \cdot 5 \mathrm{~m} \\
& W=117.6 \mathrm{~J} \\
& W=120 \mathrm{~J}
\end{aligned}
$$

Work is done by the applied Force, not the net force!

A 3.0 kg pineapple is held 1.2 m above the floor for 15 s . How much work was done on the pineapple?
Nodistane No work.
What did the work to keep the pineapple in place?

Work was done on the muscles used to hold the pineapple

Johannes is carrying his luggage.
He uses 45 N to keep it off of the ground. He walks 14 m horizontally. How much work does he do on the luggage?

$$
\begin{aligned}
& \text { Vertical } \\
& F_{\text {App }}=45 \mathrm{~N} \\
& d=0 \mathrm{~m} \\
& W=0 \mathrm{~J}
\end{aligned}
$$

The force and The distance must go in the same directs, to perform work.

This sled is pulled with a 60 N force at an angle of 30° above the horizontal.
The sled is pulled 32 mhorizoutall.
How much work is done on the sled?
the movement was horizontal we should use F_{x}

$$
\begin{array}{r}
W=52 N \times 32 m=1664 \mathrm{~J} \\
W=1700 \mathrm{~J}
\end{array}
$$

- W is positive if you put energy into moving
a_{n} object. (push/pull, engine)
- W is negative if you get energy out of a moving object. (Friction, generators) $\stackrel{\swarrow}{\text { Heat }}$

