Momentum
Newton described momentum as the "quantity of motion".

Ex. Big Football Player Running at $5 \mathrm{~m} / \mathrm{s}$ more momentum Jockey
No horse Running $5 \mathrm{~m} / \mathrm{s}^{\text {and }}$

An object's momentum depends on:

- Velocity
- mass

Momentum formula
ally the the $\rho=m \times V$

$$
\begin{aligned}
& \rho=\text { momentum } \\
& m=\text { mas } \\
& V=\text { velocity }
\end{aligned}
$$

rho offer written as p.
Momentum is a vector \rightarrow magnitude direction
$\begin{array}{ll}\text { Units: } \mathrm{kg} \mathrm{m} / \mathrm{s} & N \Rightarrow \mathrm{kgn} \\ & \text { or } \quad N_{S}\end{array}$

Ex.1 Calculate the momentum of a 6.2 kg pumpkin travelling at a velocity of $5.0 \mathrm{~m} / \mathrm{s}$ west.

$$
m=6.2 \mathrm{~kg} \quad \text { د }
$$

$m=6.2 \mathrm{~kg}$
$V=5.0 \mathrm{~m} / \mathrm{s}$ wast $\vec{p}=m \vec{v}=6.2 \times 5.0=31 \mathrm{kgm} / \mathrm{s}$ west

Ex. 2 A baseball is 0.14 kg and is moving at $35 \mathrm{~m} / \mathrm{s} \mathrm{N}$.
a) Find the momentum of the baseball.

$$
p=m v=0.14 \times 35=4.9 \mathrm{kgm} / \mathrm{s} \mathrm{~N}
$$

b) What would be the velocity of a 7.6 kg bowling ball with the same momentum?

$$
\frac{p}{m}=\frac{m v}{m} \quad v=\frac{P}{m}=\frac{4.9 \mathrm{kgm} / \mathrm{s}}{7.6 \mathrm{~kg}}=0.64 \mathrm{~m} / \mathrm{s} \mathrm{~N}
$$

Ex. 3 Remember change $=$ Final - initial
a) A 0.5 kg water balloon is thrown against a wall at $32 \mathrm{~m} / \mathrm{s}$. It burst against the wall (stops). What is the change in momentum of the balloon?

$$
\begin{array}{ll}
\begin{array}{l}
\text { Before } \\
\text { Initial }
\end{array} & \begin{array}{l}
\text { After } \\
v_{i}=32 \mathrm{~m} / \mathrm{s}
\end{array} \\
\underbrace{}_{0} & \Delta_{p}=p_{f}-p_{i}
\end{array} \quad m=0.5 \mathrm{~kg}
$$

b) A 0.5 kg bouncy ball is travelling at the wall with a velocity of $32 \mathrm{~m} / \mathrm{s}$. It bounces off with a velocity of $-32 \mathrm{~m} / \mathrm{s}$. Find the Sp. How does this compare to the waterballoon?

This is double the change in momentum of the water Balloon.

