Newton's Second Law
Nestor's $2^{\text {nd }}$ Law: IF an unbalanced Force acts on a body it will accelerate.
The rate of acceleration is directly proportional to the force and inversely proportional to the mass.

$$
a=\frac{F}{m}
$$

Note: Usually written as $\quad F=m a$
Reminder: Units $F=m \cdot a$
mass acceleration

Ex. Dead Jeff is swept off the floor with a force of 50 N . DJ is 53 kg . What acceleration does he experience being swept across the floor?

$$
\begin{array}{ll}
F=50 \mathrm{~N} \\
m=53 \mathrm{~kg} & F=\frac{m a}{m} \\
a=? & a=\frac{F}{m}=\frac{50 \mathrm{~N}}{53 \mathrm{~kg}}=0.94 \mathrm{~m} / \mathrm{s}^{2}
\end{array}
$$

What is the force of gravity on a 3 kg thing.

$$
\begin{array}{rr}
\text { \#8 } & \begin{array}{l}
F=? \\
m=3 \mathrm{~kg} \\
a=9.8 \mathrm{~m} / \mathrm{s}^{2}
\end{array} \\
& \\
& \text { sigrisso } 29 \mathrm{~N}
\end{array}
$$

Andy (cat) throws a 25 g toy mouse into the air with a 3 N force. What is the toy's
$\stackrel{x}{\circ}$
acceleration.

$$
\begin{aligned}
& F=3 N \rightarrow \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \\
& m=25 \mathrm{~g} \Rightarrow{ }^{\mathrm{kg}}=0.025 \mathrm{~kg} \\
& a_{=}
\end{aligned}
$$

$$
F=m a
$$

$$
a=\frac{F}{m}=\frac{3}{0.025}=120 \mathrm{~m} / \mathrm{s}^{2}
$$

Net Force \rightarrow The vector sum of all Forces.

$$
\begin{aligned}
& F_{\text {Net }}=m \cdot a \\
& F_{\text {Net }}=\sum F \\
& \begin{array}{c}
\text { sigma } \\
\text { sum } \\
\text { (addition) }
\end{array}
\end{aligned}
$$

Elevator problem:
Jenna is standing on a scale that reads 650 N . in an elevator (on Earth). The elevator is currently at rest, The elevator can accelerate at a rate of $1,35 \mathrm{~m} / \mathrm{s}^{2}$.
a) What does the scale read when the elevator

$F_{\text {Ne }}=$

Substitute. \#1): A1 En
$F_{g}=-650 \mathrm{~N}$
Substitute (\#1) into \#2)
$F_{N_{\text {scale }}}=$

$$
m=66.3 \mathrm{~kg}
$$

$$
a=1.35 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\begin{aligned}
& m \cdot a=F_{g}+F_{N \text { scale }} \\
& (66.3 \mathrm{~kg})\left(1.35 \mathrm{~m} / \mathrm{s}^{2}\right)=-650 \mathrm{~N}+F_{\text {Nscale }} \\
& 89.505 \mathrm{~N}=-650 \mathrm{~N}+F_{N \text { scale }} \\
& +650 \\
& F_{N_{\text {scale }}}=739.505 \mathrm{~N}
\end{aligned}
$$

The scale would read 740 N .
b) What does the scale read when the elevator goes down?

$$
560.494 N
$$

