Connected Masses
(1) Have a clear diagram (with labels)
(2) Rely on $F_{\text {Net }}=\sum$ Forces

$$
F_{\text {vet }}=m \cdot a
$$

(3) Separate and switch between thinking about individual masses and the system as a whole.

Ex

What is the acceleration of the blocks?

$$
\begin{aligned}
& F_{\text {Net system }}=F_{A}+F_{F} \\
& m_{\text {sys }} \cdot a \\
& \binom{\left.m_{1}+m_{2}\right) a}{3+7} a 20-13.72
\end{aligned}
$$

$$
\frac{1 Q \cdot a}{10}=\frac{6.28}{10} \quad a=0.628 \mathrm{~m} / \mathrm{s}^{2}
$$

$a=0.7 \mathrm{~m} / \mathrm{s}^{2} \quad$ What is the mass of

What is The mass ot the hanging block?

Consider as a system.
$F_{N_{0}+\text { system }}^{m_{1} g}+M F_{N_{2}}$

$$
\begin{aligned}
& \begin{array}{l}
\text { Total mass } \times \text { acceleration }=\sum \text { Forces }=0.2 \times 29.4 \\
\left(m_{1}+3\right) \times 0.7=m_{1} \times 9.8-0.2 \times 2 .
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& -\mathrm{X}_{-\mathrm{X}_{1}} . \mathrm{m}_{1}=\frac{-7.98}{-9.1} \Rightarrow m_{1}=0.88 \mathrm{~kg}
\end{aligned}
$$

Separate. Pieces

$$
\begin{aligned}
& m a=F_{A}-F_{E} \\
& 3 \times 0.7=F_{A}-5.88 \\
& 2.1=F_{A}-5.88 \\
&+5.58 \\
& 7.98=F_{A}
\end{aligned}
$$

(噮 $=5.81$

$$
\begin{aligned}
& <a=0.7 \\
& \underset{F_{A}=7.98}{ } \rightarrow F_{F}=5.88
\end{aligned}
$$

Difference
from Gravity

$$
\begin{aligned}
& m a=F_{A}-F_{E} \\
& 3 \times 0.7=F_{A}-5.88 \\
& 2.1=F_{A}-5.88 \\
&+5.58 \\
& 7.98=F_{A}
\end{aligned}
$$

If a 75 kg person is in the elevator, how hard will the engine work to raise them at a constant velocity? $a=0$

$$
F_{N c t}=F_{c w}+F_{\epsilon}+F_{g \epsilon}
$$

$$
O=-11760+F_{E}+10652.6 \mathrm{~N}
$$

$$
F_{E}=1107.4 \mathrm{~N}
$$

a) Find out how far spring 2 is stretched.
b) Find out how far spring 1 is stretched.

$$
\begin{aligned}
F_{E} & =k \Delta X \\
\frac{41.16}{12.4} & =\frac{12.4}{12.4} s x \Delta x=3.32 \mathrm{~m}
\end{aligned}
$$

