Projectile Motion \& Gravity
The accepted value for an object accelerated by Earth's gravity is $\vec{a}=-9.8 \mathrm{~m} \boldsymbol{3}^{2}$.

Assumes: air resistance is NEGLIGIBLE.
The Shape of a Projectile's Path
Back in ye old days.
-Artillerists thought a projectile will travel in a straight path until it loses "impetus," then it would drop.
The were wrong, but not as wrong as you might think. There is large effect from
Too complicated \rightarrow air resistance that causes for Fl. the unusual shape.

If we neglect air resistance the shape of a projectile's path is a parabola.

Key Feature

- at every point $\vec{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
(on Earth)
- The vertex (turning point) has a $v=0$
- It is perfectly symmetrical across a vertical line throng

Extra Notes
across a vertical' line throng the vertex
-Drop means $v_{i}=0$

- Be careful with + and - signs

Ex. A cannonball is shot at Austin with an upward velocity of $24 \mathrm{~m} / \mathrm{s}$. Austin is on a 13 m tall scaffold. How long does he have to live?

$$
\begin{aligned}
& v_{i=2} 4 \mathrm{~m} / \mathrm{s} \\
& d=v_{i} t+1 / 2 a t^{2} \text { quadratic Formula! } \\
& 0=\frac{1}{2} a t^{2}+v i t-d \\
& a=-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { d. } 13 \\
& t=\text { ? } \\
& 0=\frac{1}{2}(-9.8) t^{2}+24 t-13 \\
& \theta=\underbrace{-4.9}_{a} t^{2}+\underbrace{24}_{b} t \underbrace{-13}_{c} \\
& t=\frac{-24 \pm \sqrt{24^{2}-4(-4.9)(-13)}}{2(-4.9)}=\frac{-24 \pm \sqrt{576-254.8}}{-9.8} \\
& t=\frac{-24 \pm \sqrt{321.2}}{-9.8}=\frac{-24 \pm 17.9}{-9.8}+7 \frac{-24+17.9}{-9.8}=0.62 \mathrm{~s}, \begin{array}{l}
-24-17.9 \\
-9.8
\end{array} 4.28 \mathrm{~s}
\end{aligned}
$$

Austica got hit by
both con $1 d$ be right. the cannonball at either 0.62 s or 4.28 s

b) When does the cannonball reach 32 m in height?

$$
\frac{-24 \pm \sqrt{24^{2}-4(-4.9)(-32)}}{-9.8}=\frac{-24 \pm \sqrt{-5, .2^{2}} L_{\text {Red }}^{N_{\text {ot }}}}{-9.8}
$$

It doesn't.

