Quadratic Formula
Ex. Graham is base jumping. He leaps downward off the cliff at a velocity of $2 \mathrm{~m} / \mathrm{s}$. The cliff 350 m tall and the acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward. How long does it take Graham to hit the ground?

$$
\begin{aligned}
v_{i} & =+2 \mathrm{~m} / \mathrm{s} \\
9 & =+9.8 \mathrm{~m} / \mathrm{s}^{2} \\
d & +350 \mathrm{~m} \\
t & =?
\end{aligned}
$$

$$
\begin{array}{r}
\vec{d}=\vec{v} \cdot t+\frac{1}{2} a t^{2} \leftharpoonup \text { Doesn't algebra } \\
\text { nicely }
\end{array}
$$

We have to use the quadratic formula.

For the equation where x is unknown and

$$
\begin{gathered}
a x^{2}+b x+\underline{c}=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$ a, b, c are non-zero coefficients

Use the

Back to our example:

$$
v_{i}=z_{\mathrm{m}} / \mathrm{s}
$$

$$
d=v i t+1 / a t^{2}
$$

$$
a=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
d=350
$$

$t=$?

Quadratic Formula when using Eq\#3 and looking for time.
(1) Rearrange the formula to be

$$
0=1 / 2 a t^{2}+v i t-d
$$

(2) Plug in values

$$
\begin{aligned}
& t=\frac{-2 \pm \sqrt{2^{2}-4(4.9)(-350)}}{2(4.9)} \\
& \text { (4) Plug into the Quadratic } \\
& \text { Formula } \\
& \begin{array}{l}
t=\frac{-2 \pm \sqrt{6864}}{9.8}+\frac{-2+82.8}{9.8}=8.24 \mathrm{~s} \\
t=\frac{-2 \pm .82 .8}{9.8}-\frac{-2-82.8}{9.8}=-8.65
\end{array} \\
& \begin{array}{c}
\text { Cant have negative } \\
\text { time }
\end{array}
\end{aligned}
$$

Graham takes 8.24 s to hit the ground.

