2.4 Projectile Motion \& Gravity

The accepted acceleration due to gravity at the surface of the Earth is, $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ towards the center of the Earth.

Assume: air resistance is NEGLIGIBLE The shape of a projectile's motion:

- Ye old days
- Artillerist \rightarrow shoot something It will travel in a
 straight line until it runs out of "impetus". Then it drops.

If air resistance is negligible then the Shape of a projectile's path is a parabola.

Key Features on Earth

- At every point $a=-9.8$ mss
- The vertex (turning point) $=-1 / 2 \mathrm{~m}$, recital velocity $=0 \quad 1,1$

-The verTex(Turning porn) $\{$ vertal velocity $=0$
- Is perfectly symmetrical across time the vertex.

Extra Points

- Drop or dropping \rightarrow it means $v_{i}=0$
-Be careful with what you define as
+ or - Usually down is negative.
Examples: A cannonball is shot straight up from the ground at a velocity of $24 \mathrm{~m} / \mathrm{s}$. At which times) does the ball reach 13 m in height?

$$
\begin{array}{lc}
v_{i}=24 \mathrm{~m} / \mathrm{s} & \frac{d=v_{i} t+1 / 2 a t^{2}}{-d} R 8 \text { Find time } \\
a=-9.8 \mathrm{~m} / \mathrm{s}^{2} & \text { Use the quadratic } \\
d=13 \mathrm{~m} & \text { equation }
\end{array}
$$

$t=$?
(1) Rearrange

$$
0=\frac{1}{2} a t^{2}+v i t-d
$$

(2) Put in the numbers

$$
\begin{aligned}
& 0=\frac{1}{2}(-9.8) t^{2}+(24) t-(13) \quad t \\
& 0=\underbrace{-4.9}_{a} t^{2}+\underbrace{24}_{b} t \underbrace{-13}_{c}
\end{aligned}
$$

(3) Use the quadratic equation.

$$
\begin{aligned}
& \text { the quadratic equation. } \\
& -4+\sqrt{(2.4)^{2}-4(-4.9)(-13)}-24 \pm \sqrt{576-254.8}
\end{aligned}
$$

$$
\begin{aligned}
& t=\frac{-24 \pm \sqrt{(24)^{2}-4(-4.9)(-13)}}{2(-4.9)}=\frac{-24 \pm \sqrt{516-\angle 0 \cdots}}{-9.8} \\
& t=\frac{-24 \pm \sqrt{321.2}}{98}=\frac{-24 \pm 17.922+7=\frac{-24+17.922}{-9.8}=0.62}{-9.8}, \rightarrow 24-17.922428 .
\end{aligned}
$$

(4) Check.

In most situations you can't have negative time.
The cannon ball was 13 m high after 0.62 s and $4,28 \mathrm{~s}$,
P. 68 Review Questions Worksheet *3

