2.3 Uniform Acceleration

Quick Note: $\frac{k_{m}}{h} \leftrightarrow \frac{m}{s} \quad \frac{k_{m}}{h} \underset{1 \mathrm{~km}}{1000 \mathrm{~m}} \times \frac{1 \mathrm{~h}}{3600 \mathrm{~m}}=\frac{\mathrm{m}}{\mathrm{s}}$

(\#1) $\vec{d}=\frac{v i+v_{f}}{2} \cdot t$
(\#2) $\vec{a}=\frac{v_{f}-v_{i}}{t}$
What if we don't want V_{f} ?
\#2 solve for v_{f}

$$
\begin{aligned}
\overrightarrow{a^{t}}=\frac{v_{f}-v i}{t} \times t \Rightarrow \underset{~ a}{t} t=v_{f}-v_{i} \\
+v_{i}
\end{aligned}
$$

Substitute into \#1

$$
d=\frac{v_{i}+\left(v_{i}+a t\right)}{2} \cdot t \Rightarrow \vec{d}=\left(\frac{\left(2 v_{i}\right.}{2}+\frac{a t}{2}\right) \cdot t
$$

\#3 $\left\lvert\, \vec{d}=\vec{v}_{i} t+\frac{1}{2} a t^{2}\right.$
Ex. Dead Jeff is strapped into a wing suit and kicked out of a plane. The
wingsuit lets him fall with an acceleration of $5 \mathrm{~m} / \mathrm{s}^{2}$ and his initial velocity $0.5 \mathrm{~m} / \mathrm{s}$ downward. How far has Dead Jeff fallen is 15 seconds?

$$
v_{i}=0,5 \mathrm{~m} / \mathrm{s}
$$

$$
16
$$

$$
a=5 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
d=?
$$

$$
t=15 \mathrm{~s}
$$

$$
\begin{gathered}
d=v i t+\frac{1}{2} a t^{2} \\
\vec{d}=0.5(15)+\frac{1}{2}(5)(15)^{2} \\
\vec{d}=7.5+\frac{1}{2}(5)(225) \\
\vec{d}=7.5+562.5 \\
\vec{d}=570 \mathrm{~m}
\end{gathered}
$$

What if we dort have time?
\#2 solve for t

$$
\begin{aligned}
& \# 1 d=\frac{v_{i}+v_{F}}{2} t \\
& \# 2 a=\frac{v_{F}-v_{i}}{t}
\end{aligned}
$$

$$
\begin{aligned}
& t \times \frac{\vec{q}}{木}=\frac{\vec{v}_{f}-\vec{v}_{c}}{t^{a}} \times \neq t \\
& t=\frac{v_{F}-v_{i}}{a} \Rightarrow \text { substitute into } \# 1 \\
& \vec{d}=\frac{v_{i}+v_{f}\left(\frac{v_{F}-v_{i}}{2}\right) \Rightarrow \vec{d}=\frac{\left(v_{i}+v_{f}\right)\left(v_{f}-v_{i}\right)}{2 a}}{2 a} \\
& \vec{d}=\frac{v^{2}}{2}-v_{i}^{2}+v_{f}^{2}-\operatorname{sit}=\frac{v_{f}^{2}-v_{v}^{2}}{2 a} .2 a
\end{aligned}
$$

$$
\begin{aligned}
\substack{+v_{i}^{2} \\
2 a d=v e_{i}^{2}-v_{i}^{2} \\
+v_{i}^{2}} & \Rightarrow \\
& \# 4 v_{F}^{2}=v_{i}^{2}+2 a d
\end{aligned}
$$

Example: An investigater is investigating a car crash. Through observation and science she determines the cars slid 47 m and decelerated at a rate of $3.2 \mathrm{~m} / \mathrm{s}^{2}$. How fast was 1 the car going just before it crashed? To astop $v_{f}=0$

$$
\begin{aligned}
& V_{i}=? \\
& V_{f}=0 \mathrm{~m} / \mathrm{s} \\
& a=-3.2 \mathrm{~m} / \mathrm{s}^{2} \\
& d=47 \mathrm{~m}
\end{aligned}
$$

$$
v_{f}^{2}=v_{i}^{2}+2 a d
$$

Solve for v_{i}

$$
\sqrt{V_{i}^{2}}=\sqrt{V F^{2}-2 a d}
$$

$$
V_{i}=\sqrt{\left(v_{f}^{2}-2 a d\right)}
$$

$$
V_{i}=\sqrt{\left((0)^{2}-2(-3.2)(47)\right)}
$$

$$
v_{i}=\sqrt{0+300.8}=\sqrt{300.8}
$$

$$
v_{i}=17.345386
$$

$$
v_{c}=17 \mathrm{~m} / \mathrm{s}
$$

(1) Write down the variables $v_{i_{f}}$ at and what you know.
(2) Figure out which formula to use write it down.
(3) Solve for the wanted variable. General solving \rightarrow no number
(4) Plug in numbers, get your answer.个DOTHTS

