Scalar: Forms of measurement that only account for the size or magnitude of the meas urement

Vector a quantity that has both direction and magnitude

Scalar
Vector
Distance \longleftrightarrow Displacement
Speed \longrightarrow Velocity
Mass
Acceleration
Volume
Force
Energy
Momentum
Distance us. Displacement
Distance: the total length between objects or the total length an object has travelled
Displacement: the total length From the initial point to the final point.

$$
1 \text { Reminder }
$$

SOHCAHTOA

$$
\therefore \theta=\frac{O P P}{}
$$

$$
\begin{aligned}
& \sin \theta=\frac{\partial p p}{H y p} \\
& \cos \theta=\frac{A d j}{H y p} \\
& \tan \theta=\frac{O p p}{A^{d} j}
\end{aligned}
$$

a) $200 m+400 m+500 m=1100 m$
b) Size of displacement

$$
\begin{aligned}
& 400^{2}+300^{2}=\vec{d}^{2} \\
& 160000+90000=\vec{d}^{2} \\
& \sqrt{250,000}=\vec{d}^{2}
\end{aligned} \quad \begin{aligned}
& \vec{d}=500 \mathrm{~m}
\end{aligned}
$$

Note: The symbol we use to show something is a vector is an arrow ontop of whatever variable we are using.
displacement $\Rightarrow \vec{d}$
Velocity $\Rightarrow \vec{v}$
acceleration $\Rightarrow \vec{a}$

a) $503 \frac{1}{m}$
b) 290 m East

Displacement: $\vec{d}=10 \mathrm{~m}$ NE $53^{\circ} \mathrm{E}$ of N
$\frac{\text { Directions }}{\text { Con sss }}$

$$
25^{\circ} \mathrm{Nof} W
$$

$W_{G} f N$
Directions p. 2.
When moving in a line cont left/right, or up(down) we can just say one direction is positive and the other is negative.
Ex. An elevator goes up 3 floors, down 2 floors, up 4 floss, whee : is disdacement?

$$
\vec{d}=+3-2+4=5 \text { floors }
$$

Velocity us. Speed
velocity is change in displacement over time speed 11 " distance $"$

Formula: $\vec{v}=\frac{\vec{d}}{t}$
Graphs: Displacement us time graph

* Velocity is always the
slope of a distance vs time
 graph p. 44

$\stackrel{\rightharpoonup}{V}=0$
$\vec{V}=$ positive

$\vec{v}=$ negative

$$
p^{.46 \# 1-8}
$$

